IDENTIFYING DATA 2023_24
Subject (*) LABORATORY OF TRANSPORT PHENOMENA AND FLUID MECHANICS Code 20904119
Study programme
Double degree in Chemical Engineering and Food Bioprocess Technology (2019)
Cycle 1st
Descriptors Credits Type Year Period
3 Compulsory Second AN single exam
Language
Català
Department Mechanical Engineering
Chemical Engineering
Coordinator
GIBERT MASIP, JOSÉ LUÍS
E-mail joseluis.gibert@urv.cat
k.george@urv.cat
ronaldoluis.hohn@urv.cat
akim.lavrinenko@urv.cat
Lecturers
GIBERT MASIP, JOSÉ LUÍS
GEORGE , KURIAS MULAKUMATTATHIL
HÖHN , RONALDO LUÍS
LAVRINENKO , AKIM
Web
General description and relevant information <p>A set of experimental laboratory practices will be carried out in order to obtain a basic knowledge of the momentum, heat and mass transport phenomena.</p><div><br /></div><div>The language of the course is catalan.</div><div><br /></div><div>Some explanations in the laboratory can be done in english. If the students have problems with english, then the explanations will be repeated in catalan.</div><div><br /></div>

Competences
Type A Code Competences Specific
 A1.1 Consistently apply knowledge of basic, scientific and technological subjects pertaining to engineering
 A1.2 Design, execute and analyse experiments related to engineering
 A1.3 Ability to analyse and assess the social and environmental impact of technical solutions (G7)
 A2.1 Ability to deal with specifications, regulations and mandatory standards (G6)
 A4.1 Knowledge of applied thermodynamics and heat transfer. Fundamental laws and their application to engineering problems (RI1)
 A4.2 Knowledge of the fundamental principles of fluid mechanics and their application to engineering problems. Design of piping networks, channels and fluid systems (RI2)
 A5.3 Ability to design and manage applied experimental procedures, especially to determine thermodynamic and transport properties and to model phenomena and systems in the field of chemical engineering, fluid flow systems, heat transfer, mass transfer operations, kinetics of chemical reactions and reactors (QI3)
 A5.4 Capacity to design, manage and operate procedures (QI4)
Type B Code Competences Transversal
 B1.1 Communicate information clearly and accurately to diverse audiences (CT5)
 B1.5 Use ICT to efficiently manage information and knowledge (CT2)
 B4.1 Learn effective ways to assimilate knowledge and behaviour.
 B4.2 Identify the learning process and academic and professional preferences
 B4.3 Learn independently and with initiative.
 B4.4 Knowledge in basic and technological subjects that enables them to learn new methods and theories and gives them the versatility to adapt to new situations. (G3)
 B5.1 Work independently with responsibility, initiative and innovative thinking.
 B5.2 Take on entrepreneurial positions.
 B5.3 Ability to solve problems with initiative, decision-making, creativity and critical reasoning, and to communicate and transmit knowledge, skills and abilities in the field of Industrial Technical Engineering, specialised in Industrial Chemistry. (G4) (CT3)
Type C Code Competences Nuclear

Learning outcomes
Type A Code Learning outcomes
 A1.1 Comprèn i domina els conceptes bàsics sobre les lleis generals de la mecànica, termodinàmica (...) i la seva aplicació per a la resolució de problemes propis de l'enginyeria.
Coneix els principis bàsics de la mecànica de fluids i la seva aplicació a la resolució de problemes en el camp de l'enginyeria. Calcula canonades, canals i sistemes de fluids.
 A1.2 Dissenya i gestiona procediments d'experimentació aplicada, especialment per a la determinació de propietats termodinàmiques i de transport, i modelatge de fenòmens i sistemes en l'àmbit de l'enginyeria química, sistemes amb flux de fluids, transmissió de calor, operacions de transferència de matèria, cinètica de les reaccions químiques i reactors.
 A1.3 Treballa seguint sempre les normes de seguretat. Opera al laboratori minimitzant el consum d'energia i de matèries primeres i produint un mínim de residus.
 A2.1 Coneix i aplica les especificacions dels equips, i dissenya els experiments d'acord amb les especificacions, reglaments i normes d'obligat compliment.
 A4.1 Relaciona els coneixements teòrics en el camp de mecànica de fluids amb l'experimentació duta a terme en els laboratoris.
 A4.2 Relaciona els coneixements teòrics en el camp de la termodinàmica amb l'experimentació duta a terme en els laboratoris.
Realitza mesures en canonades per a determinar les característiques del flux
Determina les característiques de les màquines hidràuliques
 A5.3 Assigna un error als resultats obtinguts en els experiments en funció de l'error de les dades que utilitzin i de l'error experimental de les mesures que prenen. Considera la importància dels errors en la validació de resultats experimentals.
Aprèn les tècniques bàsiques de mesura al laboratori. Decideix l'aplicació de les tècniques analítiques adequades per a cada problema.
Determina experimentalment els coeficients que caracteritzen l'intercanvi de calor.
Determina propietats físiques de fluids.
Determina experimentalment els coeficients de difusió.
Caracteritza els perfils de velocitat d'un flux.
Mesura experimentalment la força exercida posa un fluid sobre una superfície.
Determina experimentalment les pèrdues de càrrega en sistemes de flux.
 A5.4 Analitza les especificacions dels equips, estableix marges d'operació teòrica i dissenya procediments d'operació.
Type B Code Learning outcomes
 B1.1 Intervene effectively and convey relevant information.
Structure their presentations and comply with any requirements should there be any.
Plan their communications: generate ideas, search for information, select and order the information, make schemes, determine the type of audience and the objectives of the communication, etc.
Draft documents with the appropriate format, content, structure, language accuracy and register, and illustrate concepts using the appropriate conventions: formats, titles, footnotes, captions, etc.
Prepare their presentations and use a variety of presentation strategies (audiovisual support, eye contact, voice, gesture, time, etc.).
Usa un llenguatge apropiat a la situació
 B1.5 Coneix el maquinari bàsic dels ordinadors.
Coneix el sistema operatiu com a gestor del maquinari i el programari com a eina de treball.
Utilitza programari per a la comunicació: editors de text, fulls de càlcul i presentacions digitals.
Utilitza programari per a la comunicació virtual: eines interactives (web, moodle, blogs, etc), correu electrònic, fòrums, xat, vídeo-conferències, eines de treball col.laboratiu etc.
Localitza i accedeix a la informació de manera eficaç i eficient.
 B4.1 Desenvolupa estrategies pròpies de resoldre problemes i trobar solucions.
 B4.2 Adopta autònomament les estratègies d’aprenentatge en cada situació
Estableix els seus propis objectius d’aprenentatge
 B4.3 Selecciona un procediment d’entre els que li proposa el professor
En cada cas, sap formular les preguntes adients per resoldre els dubtes o les qüestions obertes i té criteri en la cerca de la informació.
 B4.4 Té una visió de conjunt de les diferents teories o metodologies d’una assignatura
Fa aportacions significatives o certes innovacions
Transfereix l’aprenentatge de casos i exercicis de l’aula a situacions reals d’altres àmbits
 B5.1 Decide how to manage and organize work and the time required to carry out a task on the basis of an initial schedule.
Presenta resultats d’allò que s’espera en la manera adequada d’acord amb la bibliografia donada i en el temps previst
Analyze their limitations and the chances they have of carrying out the task/job.
Decide how to manage and organize work and time.
Té criteri sobre el seu procés d’aprenentatge i les necessitats d’aprenentatge
 B5.2 Mostra un criteri correcte per a decisions de manera encertada basant-se en dades i informació objectiva disponible
Decideix com ha de fer el treball previst perquè tingui la màxima qualitat possible
Pren decisions amb criteri en situacions compromeses i sota pressió.
 B5.3 Recull la informació significativa que necessita per resoldre els problemes en base a criteris objectius
Segueix un mètode lògic per identificar les causes d’un problema
Provide alternative solutions to a problem and evaluate risks and advantages.
Draw up strategies to solve problems.
Té la capacitat de dirigir el procés de presa de decisions de manera participativa
Obtain the support they need from others for their decisions to be successful.
Metòdicament es pregunta sobre noves formes de fer les coses, busca nous procediments i experimenta amb procediments nous
Analitza riscos i beneficis de la innovació
Type C Code Learning outcomes

Contents
Topic Sub-topic
Measurement of physical properties. Determine the viscosity of liquids with the Cannon-Fenske viscometer. Analyze the dependence of viscosity with concentration and temperature.
Force on surfaces. We will calculate the force exerted by a jet that impacts on different types of static plates.
Open, semi-open and closed flow: head losses, flow measurement, inertial effects and visualization. We will determine the air velocity profile inside a pipe and the pressure drop in the same pipe.
We will calibrate different flow meters: an Orifice Plate, a Venturi and a Rotameter of variable section.
Heat transfer Measurement of radiation heat transfer.
Measurement of free and forced convection.
Mass transfer: diffusivity. Experimentally find the mass diffusion coefficient in the liquid phase.
Hydraulic machines: pumps and turbines. Determine the characteristic H-Q curves of two simple centrifugal pumps at a fixed rotation speed and of two centrifugal pumps associated in series and in parallel.
Determine the operating characteristics of a Pelton turbine at different speeds and study the variation of engine torque, power, discharge and performance of the turbine according to its rotational speed.

Planning
Methodologies  ::  Tests
  Competences (*) Class hours
Hours outside the classroom
(**) Total hours
Introductory activities
2 0 2
Laboratory practicals
A1.1
A1.2
A1.3
A2.1
A4.1
A4.2
A5.3
A5.4
B1.1
31 32 63
Personal attention
1 0 1
 
Extended-answer tests
A1.1
A1.2
A1.3
A2.1
A4.1
A4.2
A5.3
A5.4
B1.1
B4.1
B4.2
B4.3
B4.4
B5.1
B5.2
B5.3
2 3 5
Multiple-choice objective tests
A1.1
A4.2
B4.2
1 3 4
 
(*) On e-learning, hours of virtual attendance of the teacher.
(**) The information in the planning table is for guidance only and does not take into account the heterogeneity of the students.

Methodologies
Methodologies
  Description
Introductory activities Introduction and general planning: sources of information, assessment calendar, standards required, ...
Theory and practice of measurement uncertainty and its propagation in calculated variables.
Laboratory practicals We will study the results of practical cases in chemical engineering in which the transport of mass, energy and/or momentum constitutes the basic phenomenon, the understanding of which guarantees the control of the process.

Laboratory practices are carried out in groups.
Personal attention During consultation hours

Personalized attention
Description

When you come to the laboratory or by e-mail, you can ask Josep Lluís Gibert (joseluis.gibert@urv.cat) for the day, time and place for the advice necessary to make good use of the subject or to resolve doubts about the job development

You can also take advantage of the assistance in the laboratory for personalized attention, as long as it does not impact on the normal development of the practice session.

Assessment
Methodologies Competences Description Weight        
Laboratory practicals
A1.1
A1.2
A1.3
A2.1
A4.1
A4.2
A5.3
A5.4
B1.1
The students send the group reports to moodle within a week after the realization of each practice and the teachers evaluate their content with objective criteria and in such a way that the students receive constant feedback throughout the course.
In addition, aspects such as compliance with safety rules and behavior in the laboratory are evaluated.
50%
Extended-answer tests
A1.1
A1.2
A1.3
A2.1
A4.1
A4.2
A5.3
A5.4
B1.1
B4.1
B4.2
B4.3
B4.4
B5.1
B5.2
B5.3
A final individual test to evaluate content and procedures 40%
Multiple-choice objective tests
A1.1
A4.2
B4.2
Tests to accredit sufficient technical and methodological knowledge before doing each practice in the laboratory 10%
Others   Laboratory notebook. All work done in the laboratory should be recorded in an individual notebook. This notebook will not be graded, but it can be used to take the final exam, so the more complete this notebook is, the easier the final exam will be.
 
Other comments and second exam session

The multiple-choice objective tests are necessary to be able to attend the laboratory with minimal knowledge about the practice to be done. If a practice test is not taken, the grade for that test will be zero and there will be a 50% penalty on the practice grade.

Laboratory practicals are mandatory. Attendance and excused absences will be monitored according to ETSEQ regulations. Students who do not attend a practice must contact the responsible teacher to be able to recover the practice.

The extenden-answer test (final exam) is mandatory. If it is not done, the subject's grade is "NOT PRESENTED", regardless of the results of the other sections of the subject.

The laboratory notebook is mandatory. It does not add points to the final grade, but a non-existent or poorly made notebook will result in a penalty of up to 10% of the overall grade.

The final score is the weighted average of the grades according to their weight. There is no minimum score required in any of the sections, but everything must have been done (tests, practices and final exam). For example, without taking the final test you cannot pass the subject.

There is no second call. If the student fails, he will have to repeat all the practices the following year.


Sources of information

Basic Yunus A. Çengel; John M. Cimbala, Fluid Mechanics. Fundamentals and Applications., , Internet. Accés gratuït.

All practical scripts have a bibliography section, where bibliographic resources are detailed (they are all on the Internet and are free to access), as well as YouTube videos that can be very clarifying on specific topics of the subject.
You can also use (in fact, it's quite convenient) artificial intelligence (AI) resources as help to solve doubts of the subject. For example, looking for substance properties, theoretical explanations of transport phenomena concepts, calculation procedures, etc.

When you use AI resources you need to indicate it, as if it were a bibliography and, above all, check the information given by the AI system... you think that these systems, if they don't know something, they invent it... therefore, you should not rely on it uncritically.

Complementary White, F. M., Mecánica de fluidos, McGraw-Hill, Madrid, 2002
Incropera, F. P., DeWitt, D. P., Fundamentals of Heat and Mass Transfer, John Wiley &amp; Sons, New York
, Internet, ,

Recommendations

Subjects that are recommended to be taken simultaneously
TRANSPORT PHENOMENA/20204125

Subjects that it is recommended to have taken before
FLUID MECHANICS ENGINEERING/20204110
 
Other comments
1. Choose the work group efficiently. There are always problems because not everyone in the group works well. 2. Submit the work within the deadline and do not wait until the last minute to do it. 3. Come to the laboratory with practice prepared... it's the only way not to leave things to do, to measure... 4. Do a job well done and present it even better. It is what is expected of an engineer. 5. Be critical of the results and interpret them judiciously.
(*)The teaching guide is the document in which the URV publishes the information about all its courses. It is a public document and cannot be modified. Only in exceptional cases can it be revised by the competent agent or duly revised so that it is in line with current legislation.