IDENTIFYING DATA 2019_20
Subject (*) BIOPHYSICS Code 13214113
Study programme
Bachelor's Degree in Biochemistry and Molecular Biology (2009)
Cycle 1st
Descriptors Credits Type Year Period
6 Compulsory Second
Language
Català
Department Biochemistry and Biotechnology
Coordinator
RODRÍGUEZ GALLEGO, ESTHER
E-mail gerard.pujadas@urv.cat
enric.olle@urv.cat
esther.rodriguez@urv.cat
Lecturers
PUJADAS ANGUIANO, GERARD
OLLE CORBELLA, ENRIC
RODRÍGUEZ GALLEGO, ESTHER
Web http://moodle.urv.net/moodle/
General description and relevant information Que l’alumne adquireixi els coneixements essencials sobre les bases de fenomenologia biològica a partir dels principis de la física. Analitzar els processos biològics com a combinació de fluxos i forces conjugats; i la bioenergètica associada en aquests processos.

Competences
Type A Code Competences Specific
 CE1 Understand and apply basic knowledge of physics, mathematics and chemistry to Biochemistry and Molecular Biology.
 CE14 Describe how living beings extract, transform and use the energy FROM their surroundings.
Type B Code Competences Transversal
Type C Code Competences Nuclear

Learning outcomes
Type A Code Learning outcomes
 CE1 Aplicar mètodes deterministes i estocàstics en l'estudi de l'evolució dels sistemes biològics
 CE14 Descriure les estratègies de gestió de l'energia que posseïxen els sistemes biològics
Type B Code Learning outcomes
Type C Code Learning outcomes

Contents
Topic Sub-topic
I PROCESSES
1 Physical bases of the biochemical world. The molecular logic and fundamental characteristics of living matter. Production and consumption of energy in biological systems. Stationary state of biological systems. Flow of biological information.
2 Principles of thermodynamics in biological systems. Energy, heat, work. First law. Entropy and living matter. Free energy and concentration. Chemical potential. High-energy phosphate compounds.
3 Membrane transport. Fluid mosaic model. Significance of molecular movements in the membrane. Brownian diffusion and movement. Fick's law. General mechanisms of membrane transport. Thermodynamic model of the sodium pump.
4 Transmission of energy at the membrane level. Translocation of protons and proton-motor force in electron transport chains. Chemiosmotic model. Coupling between electron transport chains and ATP synthesis. Examples of processes associated with the proton-motor force.
5 Capture of light energy. Excitation of molecules by light. Pigments and photosystems. Electron transport in photosynthetic systems. Photophosphorylation.
6 The eye as an optical instrument. General structure, poles and cones. Molecular bases of vision. Absorption and emission of light. Other applications of the rhodopsin system.
7 Membrane potential. Excitable membranes. Action potential. The nervous impulse. Ion channels in nerve cell membranes. Synaptic transmission.
8 Muscle contraction The muscle and its diversity. Organization of skeletal muscle. Contractile muscle proteins. Mechanism and regulation of muscle contraction. Muscle contraction energy.
9 Cytoskeleton, cilia and flagella. Actin-dependent motor systems. Microtubule systems. Movement of cilia and flagella. Intracellular transport. Bacterial motility.
II TIME VARIATIONS
10 Generalization of the second principle in open systems. Dissipation function. Phenomenological equations. Minimal entropy production principle. Stability of stationary states. Unbalanced processes.
11 Deterministic analysis of systems. Kinetic processes as systems of differential equations. Stationary solutions. Lotka-Volterra model. Dynamics of systems. Structural stability and bifurcations.
12 Biological oscillations. Self-organization in living things. Periodic behaviors in biological systems. Rhythms. Glycolysis oscillations. Rhythms of enzyme activity. Chaos
13 Stochastic analysis of systems. Dynamics of a system through stochastic treatment. Markov chains. Simulation of stochastic processes. Monte Carlo Method.
14 Evolution, an irreversible process. Prebiotic evolution. Modeling selection and evolution. Hypercycles. tRNA as fossils of prebiotic evolution. RNY hypothesis.
15 Fluxes and forces in molecular evolution. Speed of evolution. Stochastic matrices of protein and gene evolution. Genomic distances. Models of molecular evolution.

Planning
Methodologies  ::  Tests
  Competences (*) Class hours
Hours outside the classroom
(**) Total hours
Introductory activities
1 0 1
Lecture
CE1
CE14
39 45 84
Seminars
CE1
CE14
15 45 60
Personal attention
0 0 0
 
Mixed tests
CE1
CE14
6 0 6
 
(*) On e-learning, hours of virtual attendance of the teacher.
(**) The information in the planning table is for guidance only and does not take into account the heterogeneity of the students.

Methodologies
Methodologies
  Description
Introductory activities Presentació genèrica de l' assignatura.
Lecture Exposició teòrica dels blocs temàtics a l’aula, els quals s'imparteixen durant un quatrimestre.
Seminars Exposició teòrica dels blocs temàtics a l’aula, els quals s'imparteixen durant un quatrimestre.
Personal attention Resolució de les qüestions que els alumnes plantegin sobre el contingut i/o desenvolupament de l'assignatura.

Personalized attention
Description
Presencial: Dijous de 10-11 h. Virtual: Correu electrònic.

Assessment
Methodologies Competences Description Weight        
Mixed tests
CE1
CE14
Avaluació continuada:
Mitjana de tres exàmens parcials.
100%
Others  
 
Other comments and second exam session

Examen global de l'assignatura en la 2ª convocatòria.

Durant les proves d'avaluació, els telèfons mòbils, tablets i altres aparells que no siguin expressament autoritzats per la prova, han d'estar apagats i fora de la vista.

La realització demostrativament fraudulenta d'alguna activitat avaluativa d'alguna assignatura tant en suport material com virtual i electrònic comporta a l'estudiant la nota de suspens d'aquesta activitat avaluativa. Amb independència d'això, davant la gravetat dels fets, el centre pot proposar la iniciació d'un expedient disciplinari, que serà incoat mitjançant resolució del rector o rectora.


Sources of information

Basic

Biophysics textbook online (http://www.biophysics.org/biophys/society/btol/).

Blumenfeld, L.A., Tikhonov, A. (1994) Biophysical thermodynamics of intracellular processes. Spring.Verlag. New York.

Córdoba, C.V., González, M.E.L. (1992) Biofísica. Sintesis. Madrid.

Criado, M., Casas, J. (1997) Termodinámica química y de los procesos irreversibles. Addison-Wesley Iberoamericana. Madrid.

Darwin, CH. (1982) L'origen de les espècies. Edicions 62. Barcelona.

Goldbeter, A. (1996) Biochemical oscillations and cellular rhythms. Cambridge University Press. Cambridge.

Jou, D. (1985) Introducció a la termodinàmica de processos biològics. Institut d'Estudis Catalans. Barcelona.

Hoppe, W. (1983) Biophysics. Springer Verlag. Berlin.

Laskowski, W., Pohlit, W. (1976) Biofísica. Omega. Barcelona.

Montero, F., Morá, F.(1992) Biofísica. Eudema Universidad. Madrid.

Montero, F., Sanz, J.C., Andrade, M.A. (1993) Evolución prebiótica. Eudema. Madrid.

Nelson, P. (2005) Física Biológica. Reverté. Barcelona.

Oparin, A.I. (1968) El origen de la vida. Grijalbo S.A. Mexico.

Prigogine, I. (1983) Introducción a la termodinámica de procesos biológicos. Alianza Editorial. Madrid.

Schrödinger, E. Qué es la vida?. (1992) Tusquets Editores. Barcelona.

Complementary

Recommendations


(*)The teaching guide is the document in which the URV publishes the information about all its courses. It is a public document and cannot be modified. Only in exceptional cases can it be revised by the competent agent or duly revised so that it is in line with current legislation.