IDENTIFYING DATA 2007_08
Subject Code 205142219
Study programme
Enginyeria Química i de Processos (2006)
Cycle 2nd
Descriptors Credits Type Year Period
3 Optativa Only annual
Language
Anglès
Català
Department Enginyeria Mecànica
Enginyeria Química
Coordinator
GARCIA VALLS, RICARD
E-mail ricard.garcia@urv.cat
jose.font@urv.cat
carles.torras@urv.cat
Lecturers
GARCIA VALLS, RICARD
FONT CAPAFONS, JOSÉ
TORRAS FONT, CARLES
Web
General description and relevant information

Competences
Type A Code Competences Specific
  Common
  AC1 La concepció, disseny, operació, direcció i manteniment d’instal•lacions industrials que involucrin processos químics, fisicoquímics i de bioenginyeria i altres relacionats
  AC2 La concepció i disseny constructiu d’equips i instal•lacions per a funcions relacionades amb l’activitat industrial o de recerca
  AC3 La realització d’estudis i d’assessorament relatiu a la funcionalitat d’instal•lacions industrials que involucrin processos químics, fisicoquímics i de bioenginyeria i altres relacionats
  Professional
  Research
Type B Code Competences Transversal
  Common
  BC4 Resoldre problemes de manera efectiva
  BC6 Actuar amb un esperit crític i responsable
Type C Code Competences Nuclear
  Common
  CC1 Domini de l’expressió i la compressió del/s idioma/es estrangers per al desenvolupament professional derivat del curs de postgrau
  CC2 Ús de les eines específiques de TIC per al desenvolupament professional derivat del curs de postgrau
  CC4 Desenvolupament d’habilitats informacionals
  CC5 Gestió del temps per al desenvolupament acadèmic i professional

Learning aims
Objectives Competences
List and describe the fundaments of the different membrane processes. AC1
CC1
CC2
CC4
CC5
Determine the membrane technology to use according the species to be separated. AC1
CC1
CC2
CC4
CC5
Differentiate between industrial membrane processes and bench scale membrane processes. AC3
CC1
CC2
CC4
CC5
Establish the suitable range of operating conditions for every process and separation problem. AC1
CC2
CC4
CC5
Select the right material and membrane structure according to the involved compounds. AC1
BC6
CC1
CC2
CC4
CC5
Connect the type of module with the application and membrane material. AC2
BC6
CC1
CC2
CC4
CC5
Evaluate the flux of water and solute through a membrane from transport equations. AC1
CC1
CC2
CC4
CC5
Get membrane characteristics from experimental data. AC1
BC4
CC1
CC2
CC4
CC5
Foresee the influence of concentration polarisation, fouling or ageing on membrane performance. AC1
CC1
CC2
CC4
CC5

Contents
Topic Sub-topic
1. Introduction. Classification; definitions.
2. Membranes.
Materials.
Preparation.
Modules.
Characterisation.
Transport Mechanisms
3. Membrane Processes.
Microfiltration.
Ultrafiltration.
Nanofiltration.
Reverse Osmosis.
Dialysis.
Electrodialysis.
Pervaporation.
Gas Separation.
Liquid Membranes.
Other techniques.
Membrane reactors

Planning
Methodologies  ::  Tests
  Competences (*) Class hours Hours outside the classroom (**) Total hours
Introductory activities
1 0 1
 
Lecture
10 10 20
Problem solving, classroom exercises
15 15 30
Presentations / expositions
2 4 6
Assignments
5 10 15
 
Personal tuition
1 0 1
 
Practical tests
2 0 2
 
(*) On e-learning, hours of virtual attendance of the teacher.
(**) The information in the planning table is for guidance only and does not take into account the heterogeneity of the students.

Methodologies
Methodologies
  Description
Introductory activities Presentació de l’assignatura.
Lecture Exposició teòrica dels continguts de l’assignatura.
Problem solving, classroom exercises Realització de problemes en grups.
Presentations / expositions Exposició d'una part del contingut de l'assignatura
Assignments Preparació dels apunts d'una part de l'assignatura

Personalized attention
 
Personal tuition
Description
Continuous supervision throughout presentations, reports and exercices handled at Moodle. Assessment during attention hours or by means of E-mail.

Assessment
  Description Weight
Problem solving, classroom exercises A set of exercices individually solved. 15%
Presentations / expositions Presentation of a course topic prepared in a group 10%
Assignments Preparation of the notes for a course topic, in group 35%
Practical tests Final examination: individual (40%). 40%
 
Other comments and second exam session

Sources of information

Basic M. Mulder, Basic Principles of Membrane Technology, 2nd Ed, Kluwer Academic Publishers, Dordrecht, 1997.

Complementary R. Rautenbach, R. Albrecht, Membrane processes, Wiley, New York, 1989
M.C. Porter (ed.), Handbook of industrial membrane technology, Noyes Publications, Westwood, 1990
S.P. Nunes, K.-V. Peinemann (eds.), Membrane technology in the chemical industry, Wiley-VCH, Weinheim, 2001
E.J. Hoffman, Membrane separations technology : single-stage, multistage, and differential permeation, Gulf Professional Pub., Boston, 2000
R.W. Baker, Membrane technology and applications, John Wiley & Sons, Chichester, 2004
A.I. Schäfer, A.G. Fane, T.D. Waite (ed.), Nanofiltration principles and applications, Elsevier, Oxford, 2005
American Water Works Association, Tratamiento del agua por procesos de membrana. Principios, procesos y aplicaciones, McGraw-Hill, Madrid, 1998
M. Fariñas Iglesias, Ósmosis inversa. Fundamentos, tecnología y aplicaciones, McGraw-Hill, Madrid, 1999
J.A. Medina San Juan, Desalación de aguas salobres y de mar. Osmosis inversa, Mundi-Prensa, Madrid, 2000
, Journal of Membrane Science, Elsevier,
, Desalination, Elsevier,
  • R. Rautenbach, R. Albrecht, V. Cottrell (Translator) "Membrane Processes", John Wiley and Sons, New York (1989).
  • M. C. Porter "Handbook of Industrial Membrane Technology", Noyes Publications, Westwood (1999).
  • American Water Works Research Association "Water Treatment Membrane Processes", McGraw-Hill Education, New York (1995).
Recommendations


 
Other comments
Master level course that requieres a strong basis in Thermodynamics, Transport Phenomena and Unit Operations